Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Microbiol Spectr ; 11(3): e0099423, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2316423

ABSTRACT

Coronaviruses (CoVs), including severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and SARS-CoV-2, produce double-stranded RNA (dsRNA) that activates antiviral pathways such as PKR and OAS/RNase L. To successfully replicate in hosts, viruses must evade such antiviral pathways. Currently, the mechanism of how SARS-CoV-2 antagonizes dsRNA-activated antiviral pathways is unknown. In this study, we demonstrate that the SARS-CoV-2 nucleocapsid (N) protein, the most abundant viral structural protein, is capable of binding to dsRNA and phosphorylated PKR, inhibiting both the PKR and OAS/RNase L pathways. The N protein of the bat coronavirus (bat-CoV) RaTG13, the closest relative of SARS-CoV-2, has a similar ability to inhibit the human PKR and RNase L antiviral pathways. Via mutagenic analysis, we found that the C-terminal domain (CTD) of the N protein is sufficient for binding dsRNA and inhibiting RNase L activity. Interestingly, while the CTD is also sufficient for binding phosphorylated PKR, the inhibition of PKR antiviral activity requires not only the CTD but also the central linker region (LKR). Thus, our findings demonstrate that the SARS-CoV-2 N protein is capable of antagonizing the two critical antiviral pathways activated by viral dsRNA and that its inhibition of PKR activities requires more than dsRNA binding mediated by the CTD. IMPORTANCE The high transmissibility of SARS-CoV-2 is an important viral factor defining the coronavirus disease 2019 (COVID-19) pandemic. To transmit efficiently, SARS-CoV-2 must be capable of disarming the innate immune response of its host efficiently. Here, we describe that the nucleocapsid protein of SARS-CoV-2 is capable of inhibiting two critical innate antiviral pathways, PKR and OAS/RNase L. Moreover, the counterpart of the closest animal coronavirus relative of SARS-CoV-2, bat-CoV RaTG13, can also inhibit human PKR and OAS/RNase L antiviral activities. Thus, the importance of our discovery for understanding the COVID-19 pandemic is 2-fold. First, the ability of SARS-CoV-2 N to inhibit innate antiviral activity is likely a factor contributing to the transmissibility and pathogenicity of the virus. Second, the bat relative of SARS-CoV-2 has the capacity to inhibit human innate immunity, which thus likely contributed to the establishment of infection in humans. The findings described in this study are valuable for developing novel antivirals and vaccines.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Antiviral Agents/pharmacology , SARS-CoV-2/metabolism , Nucleocapsid Proteins , Pandemics , Viral Proteins/metabolism , RNA, Double-Stranded
2.
Cell Res ; 32(9): 831-842, 2022 09.
Article in English | MEDLINE | ID: covidwho-1967595

ABSTRACT

SARS-CoV-2 variants with adaptive mutations have continued to emerge, causing fresh waves of infection even amongst vaccinated population. The development of broad-spectrum antivirals is thus urgently needed. We previously developed two hetero-bivalent nanobodies (Nbs), aRBD-2-5 and aRBD-2-7, with potent neutralization activity against the wild-type (WT) Wuhan isolated SARS-CoV-2, by fusing aRBD-2 with aRBD-5 and aRBD-7, respectively. Here, we resolved the crystal structures of these Nbs in complex with the receptor-binding domain (RBD) of the spike protein, and found that aRBD-2 contacts with highly-conserved RBD residues and retains binding to the RBD of the Alpha, Beta, Gamma, Delta, Delta plus, Kappa, Lambda, Omicron BA.1, and BA.2 variants. In contrast, aRBD-5 and aRBD-7 bind to less-conserved RBD epitopes non-overlapping with the epitope of aRBD-2, and do not show apparent binding to the RBD of some variants. However, when fused with aRBD-2, they effectively enhance the overall binding affinity. Consistently, aRBD-2-5-Fc and aRBD-2-7-Fc potently neutralized all of the tested authentic or pseudotyped viruses, including WT, Alpha, Beta, Gamma, Delta, and Omicron BA.1, BA.1.1 and BA.2. Furthermore, aRBD-2-5-Fc provided prophylactic protection against the WT and mouse-adapted SARS-CoV-2 in mice, and conferred protection against the Omicron BA.1 variant in hamsters prophylactically and therapeutically, indicating that aRBD-2-5-Fc could potentially benefit the prevention and treatment of COVID-19 caused by the emerging variants of concern. Our strategy provides new solutions in the development of broad-spectrum therapeutic antibodies for COVID-19.


Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Antibodies, Neutralizing , Antibodies, Viral/therapeutic use , Epitopes , Mice , Mice, Inbred BALB C , SARS-CoV-2 , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/genetics
3.
J Am Chem Soc ; 143(49): 20697-20709, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1550253

ABSTRACT

The main protease (Mpro) is a validated antiviral drug target of SARS-CoV-2. A number of Mpro inhibitors have now advanced to animal model study and human clinical trials. However, one issue yet to be addressed is the target selectivity over host proteases such as cathepsin L. In this study we describe the rational design of covalent SARS-CoV-2 Mpro inhibitors with novel cysteine reactive warheads including dichloroacetamide, dibromoacetamide, tribromoacetamide, 2-bromo-2,2-dichloroacetamide, and 2-chloro-2,2-dibromoacetamide. The promising lead candidates Jun9-62-2R (dichloroacetamide) and Jun9-88-6R (tribromoacetamide) had not only potent enzymatic inhibition and antiviral activity but also significantly improved target specificity over caplain and cathepsins. Compared to GC-376, these new compounds did not inhibit the host cysteine proteases including calpain I, cathepsin B, cathepsin K, cathepsin L, and caspase-3. To the best of our knowledge, they are among the most selective covalent Mpro inhibitors reported thus far. The cocrystal structures of SARS-CoV-2 Mpro with Jun9-62-2R and Jun9-57-3R reaffirmed our design hypothesis, showing that both compounds form a covalent adduct with the catalytic C145. Overall, these novel compounds represent valuable chemical probes for target validation and drug candidates for further development as SARS-CoV-2 antivirals.


Subject(s)
Acetamides/pharmacology , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Cathepsin L/antagonists & inhibitors , Drug Design , Drug Discovery , Enzyme Inhibitors/pharmacology , Humans , Models, Molecular , Molecular Dynamics Simulation , Structure-Activity Relationship , Substrate Specificity
4.
Int J Biol Macromol ; 187: 976-987, 2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1474606

ABSTRACT

Coronavirus 3C-like protease (3CLpro) is a crucial target for treating coronavirus diseases including COVID-19. Our preliminary screening showed that Ampelopsis grossedentata extract (AGE) displayed potent SARS-CoV-2-3CLpro inhibitory activity, but the key constituents with SARS-CoV-2-3CLpro inhibitory effect and their mechanisms were unrevealed. Herein, a practical strategy via integrating bioactivity-guided fractionation and purification, mass spectrometry-based peptide profiling and time-dependent biochemical assay, was applied to identify the crucial constituents in AGE and to uncover their inhibitory mechanisms. The results demonstrated that the flavonoid-rich fractions (10-17.5 min) displayed strong SARS-CoV-2-3CLpro inhibitory activities, while the constituents in these fractions were isolated and their SARS-CoV-2-3CLpro inhibitory activities were investigated. Among all isolated flavonoids, dihydromyricetin, isodihydromyricetin and myricetin strongly inhibited SARS-CoV-2 3CLpro in a time-dependent manner. Further investigations demonstrated that myricetin could covalently bind on SARS-CoV-2 3CLpro at Cys300 and Cys44, while dihydromyricetin and isodihydromyricetin covalently bound at Cys300. Covalent docking coupling with molecular dynamics simulations showed the detailed interactions between the orthoquinone form of myricetin and two covalent binding sites (surrounding Cys300 and Cys44) of SARS-CoV-2 3CLpro. Collectively, the flavonoids in AGE strongly and time-dependently inhibit SARS-CoV-2 3CLpro, while the newly identified SARS-CoV-2 3CLpro inhibitors in AGE offer promising lead compounds for developing novel antiviral agents.


Subject(s)
3C Viral Proteases/chemistry , 3C Viral Proteases/metabolism , Ampelopsis/chemistry , Antiviral Agents/pharmacology , Flavonoids/pharmacology , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Binding Sites/drug effects , Cysteine/metabolism , Flavonoids/chemistry , Flavonols/chemistry , Flavonols/pharmacology , Mass Spectrometry , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding/drug effects , Protein Conformation/drug effects , SARS-CoV-2/drug effects
5.
mBio ; 12(5): e0137221, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1462899

ABSTRACT

Interleukin6 (IL-6) is a key driver of hyperinflammation in COVID-19, and its level strongly correlates with disease progression. To investigate whether variability in COVID-19 severity partially results from differential IL-6 expression, functional single-nucleotide polymorphisms (SNPs) of IL-6 were determined in Chinese COVID-19 patients with mild or severe illness. An Asian-common IL-6 haplotype defined by promoter SNP rs1800796 and intronic SNPs rs1524107 and rs2066992 correlated with COVID-19 severity. Homozygote carriers of C-T-T variant haplotype were at lower risk of developing severe symptoms (odds ratio, 0.256; 95% confidence interval, 0.088 to 0.739; P = 0.007). This protective haplotype was associated with lower levels of IL-6 and its antisense long noncoding RNA IL-6-AS1 by cis-expression quantitative trait loci analysis. The differences in expression resulted from the disturbance of stimulus-dependent bidirectional transcription of the IL-6/IL-6-AS1 locus by the polymorphisms. The protective rs2066992-T allele disrupted a conserved CTCF-binding locus at the enhancer elements of IL-6-AS1, which transcribed antisense to IL-6 and induces IL-6 expression in inflammatory responses. As a result, carriers of the protective allele had significantly reduced IL-6-AS1 expression and attenuated IL-6 induction in response to acute inflammatory stimuli and viral infection. Intriguingly, this low-producing variant that is endemic to present-day Asia was found in early humans who had inhabited mainland Asia since ∼40,000 years ago but not in other ancient humans, such as Neanderthals and Denisovans. The present study suggests that an individual's IL-6 genotype underlies COVID-19 outcome and may be used to guide IL-6 blockade therapy in Asian patients. IMPORTANCE Overproduction of cytokine interleukin-6 (IL-6) is a hallmark of severe COVID-19 and is believed to play a critical role in exacerbating the excessive inflammatory response. Polymorphisms in IL-6 account for the variability of IL-6 expression and disparities in infectious diseases, but its contribution to the clinical presentation of COVID-19 has not been reported. Here, we investigated IL-6 polymorphisms in severe and mild cases of COVID-19 in a Chinese population. The variant haplotype C-T-T, represented by rs1800796, rs1524107, and rs2066992 at the IL-6 locus, was reduced in patients with severe illness; in contrast, carriers of the wild-type haplotype G-C-G had higher risk of severe illness. Mechanistically, the protective variant haplotype lost CTCF binding at the IL-6 intron and responded poorly to inflammatory stimuli, which may protect the carriers from hyperinflammation in response to acute SARS-CoV-2 infection. These results point out the possibility that IL-6 genotypes underlie the differential viral virulence during the outbreak of COVID-19. The risk loci we identified may serve as a genetic marker to screen high-risk COVID-19 patients.


Subject(s)
COVID-19/metabolism , COVID-19/prevention & control , Interleukin-6/metabolism , A549 Cells , Genotype , Haplotypes/genetics , HeLa Cells , Humans , Interleukin-6/genetics , Polymorphism, Single Nucleotide/genetics , Real-Time Polymerase Chain Reaction , Software
6.
Elife ; 102021 10 07.
Article in English | MEDLINE | ID: covidwho-1456505

ABSTRACT

The absence of 'shovel-ready' anti-coronavirus drugs during vaccine development has exceedingly worsened the SARS-CoV-2 pandemic. Furthermore, new vaccine-resistant variants and coronavirus outbreaks may occur in the near future, and we must be ready to face this possibility. However, efficient antiviral drugs are still lacking to this day, due to our poor understanding of the mode of incorporation and mechanism of action of nucleotides analogs that target the coronavirus polymerase to impair its essential activity. Here, we characterize the impact of remdesivir (RDV, the only FDA-approved anti-coronavirus drug) and other nucleotide analogs (NAs) on RNA synthesis by the coronavirus polymerase using a high-throughput, single-molecule, magnetic-tweezers platform. We reveal that the location of the modification in the ribose or in the base dictates the catalytic pathway(s) used for its incorporation. We show that RDV incorporation does not terminate viral RNA synthesis, but leads the polymerase into backtrack as far as 30 nt, which may appear as termination in traditional ensemble assays. SARS-CoV-2 is able to evade the endogenously synthesized product of the viperin antiviral protein, ddhCTP, though the polymerase incorporates this NA well. This experimental paradigm is essential to the discovery and development of therapeutics targeting viral polymerases.


To multiply and spread from cell to cell, the virus responsible for COVID-19 (also known as SARS-CoV-2) must first replicate its genetic information. This process involves a 'polymerase' protein complex making a faithful copy by assembling a precise sequence of building blocks, or nucleotides. The only drug approved against SARS-CoV-2 by the US Food and Drug Administration (FDA), remdesivir, consists of a nucleotide analog, a molecule whose structure is similar to the actual building blocks needed for replication. If the polymerase recognizes and integrates these analogs into the growing genetic sequence, the replication mechanism is disrupted, and the virus cannot multiply. Most approaches to study this process seem to indicate that remdesivir works by stopping the polymerase and terminating replication altogether. Yet, exactly how remdesivir and other analogs impair the synthesis of new copies of the virus remains uncertain. To explore this question, Seifert, Bera et al. employed an approach called magnetic tweezers which uses a magnetic field to manipulate micro-particles with great precision. Unlike other methods, this technique allows analogs to be integrated under conditions similar to those found in cells, and to be examined at the level of a single molecule. The results show that contrary to previous assumptions, remdesivir does not terminate replication; instead, it causes the polymerase to pause and backtrack (which may appear as termination in other techniques). The same approach was then applied to other nucleotide analogs, some of which were also found to target the SARS-CoV-2 polymerase. However, these analogs are incorporated differently to remdesivir and with less efficiency. They also obstruct the polymerase in distinct ways. Taken together, the results by Seifert, Bera et al. suggest that magnetic tweezers can be a powerful approach to reveal how analogs interfere with replication. This information could be used to improve currently available analogs as well as develop new antiviral drugs that are more effective against SARS-CoV-2. This knowledge will be key at a time when treatments against COVID-19 are still lacking, and may be needed to protect against new variants and future outbreaks.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Nucleotides/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Cell Line , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays/methods , Humans , Models, Theoretical , Nucleotides/metabolism , RNA, Viral , SARS-CoV-2/enzymology , Stochastic Processes , Virus Replication/drug effects
7.
J Virol ; 95(20): e0101021, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1440800

ABSTRACT

The host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is poorly understood due to a lack of an animal model that recapitulates severe human disease. Here, we report a Syrian hamster model that develops progressive lethal pulmonary disease that closely mimics severe coronavirus disease 2019 (COVID-19). We evaluated host responses using a multi-omic, multiorgan approach to define proteome, phosphoproteome, and transcriptome changes. These data revealed both type I and type II interferon-stimulated gene and protein expression along with a progressive increase in chemokines, monocytes, and neutrophil-associated molecules throughout the course of infection that peaked in the later time points correlating with a rapidly developing diffuse alveolar destruction and pneumonia that persisted in the absence of active viral infection. Extrapulmonary proteome and phosphoproteome remodeling was detected in the heart and kidneys following viral infection. Together, our results provide a kinetic overview of multiorgan host responses to severe SARS-CoV-2 infection in vivo. IMPORTANCE The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has created an urgent need to understand the pathogenesis of this infection. These efforts have been impaired by the lack of animal models that recapitulate severe coronavirus disease 2019 (COVID-19). Here, we report a hamster model that develops severe COVID-19-like disease following infection with human isolates of SARS-CoV-2. To better understand pathogenesis, we evaluated changes in gene transcription and protein expression over the course of infection to provide an integrated multiorgan kinetic analysis of the host response to infection. These data reveal a dynamic innate immune response to infection and corresponding immune pathologies consistent with severe human disease. Altogether, this model will be useful for understanding the pathogenesis of severe COVID-19 and for testing interventions.


Subject(s)
COVID-19/immunology , COVID-19/metabolism , Immunity, Innate , Proteome , Transcriptome , Animals , COVID-19/genetics , COVID-19/virology , Disease Models, Animal , Gene Ontology , Heart/virology , Kidney/metabolism , Kidney/virology , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/virology , Male , Mesocricetus , Myocardium/metabolism , Phosphoproteins/metabolism , Proteomics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Severity of Illness Index , Viral Load
8.
Economic Analysis and Policy ; 2021.
Article in English | ScienceDirect | ID: covidwho-1433153

ABSTRACT

Although some countries are gradually returning to production and life, the COVID-19 pandemic continues to affect the world, further motivating recovery policies. Using a global computable general equilibrium (CGE) model, this study evaluates the environmental and economic impacts of COVID-19 on the world, both today and in the longer term. This study explores the post-pandemic impacts conditional on varied fiscal policies (including forgone revenue and additional spending) and their combination with a carbon tax. This study finds that the pandemic shocks in 2020 slowed regional economies worldwide, and a continued pandemic in 2021 will further stymie economic activity. Among the government’s recovery policies, indirect tax reduction has the best positive stimulus to regional economies;however, it is not conducive to low-carbon energy development and will also lead to an increase in CO2 and pollutant emissions. A post-pandemic green recovery plan could prioritize replacing indirect production taxes with taxes on GHG emissions, which would both improve economic turnover metrics and reduce environmental emissions in 2021. In the long run, this tax shift will not only minimize the economic damage to the global economy but also help governments around the world to get back on track in meeting the goals of the Paris Agreement.

9.
ACS Cent Sci ; 7(7): 1245-1260, 2021 Jul 28.
Article in English | MEDLINE | ID: covidwho-1387139

ABSTRACT

The papain-like protease (PLpro) of SARS-CoV-2 is a validated antiviral drug target. Through a fluorescence resonance energy transfer-based high-throughput screening and subsequent lead optimization, we identified several PLpro inhibitors including Jun9-72-2 and Jun9-75-4 with improved enzymatic inhibition and antiviral activity compared to GRL0617, which was reported as a SARS-CoV PLpro inhibitor. Significantly, we developed a cell-based FlipGFP assay that can be applied to predict the cellular antiviral activity of PLpro inhibitors in the BSL-2 setting. X-ray crystal structure of PLpro in complex with GRL0617 showed that binding of GRL0617 to SARS-CoV-2 induced a conformational change in the BL2 loop to a more closed conformation. Molecular dynamics simulations showed that Jun9-72-2 and Jun9-75-4 engaged in more extensive interactions than GRL0617. Overall, the PLpro inhibitors identified in this study represent promising candidates for further development as SARS-CoV-2 antivirals, and the FlipGFP-PLpro assay is a suitable surrogate for screening PLpro inhibitors in the BSL-2 setting.

10.
ACS Pharmacol Transl Sci ; 4(4): 1408-1421, 2021 Aug 13.
Article in English | MEDLINE | ID: covidwho-1301140

ABSTRACT

SARS-CoV-2 main protease (Mpro) is a cysteine protease that mediates the cleavage of viral polyproteins and is a validated antiviral drug target. Mpro is highly conserved among all seven human coronaviruses, with certain Mpro inhibitors having broad-spectrum antiviral activity. In this study, we designed two hybrid inhibitors UAWJ9-36-1 and UAWJ9-36-3 based on the superimposed X-ray crystal structures of SARS-CoV-2 Mpro with GC-376, telaprevir, and boceprevir. Both UAWJ9-36-1 and UAWJ9-36-3 showed potent binding and enzymatic inhibition against the Mpro's from SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-OC43, HCoV-NL63, HCoV-229E, and HCoV-HKU1. Cell-based Flip-GFP Mpro assay results show that UAWJ9-36-1 and UAWJ9-36-3 inhibited the intracellular protease activity of SARS-CoV-2 Mpro. In addition, UAWJ9-36-1 and UAWJ9-36-3 had potent antiviral activity against SARS-CoV-2, HCoV-OC43, HCoV-NL63, and HCoV-229E, with UAWJ9-36-3 being more potent than GC-376 in inhibiting SARS-CoV-2. Selectivity profiling revealed that UAWJ9-36-1 and UAWJ9-36-3 had an improved selectivity index over that of GC-376 against host cysteine proteases calpain I and cathepsin L, but not cathepsin K. The X-ray crystal structures of SARS-CoV-2 Mpro with UAWJ9-36-1 and UAWJ9-36-3 were both solved at 1.9 Å, which validated our design hypothesis. Overall, hybrid inhibitors UAWJ9-36-1 and UAWJ9-36-3 are promising candidates to be further developed as broad-spectrum coronavirus antivirals.

11.
J Med Chem ; 65(4): 2848-2865, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1199254

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is a validated antiviral drug target. Several Mpro inhibitors have been reported with potent enzymatic inhibition and cellular antiviral activity, including GC376, boceprevir, calpain inhibitors II, and XII, with each containing a reactive warhead that covalently modifies the catalytic Cys145. Coupling structure-based drug design with the one-pot Ugi four-component reaction, we discovered one of the most potent noncovalent inhibitors, 23R (Jun8-76-3A) that is structurally distinct from the canonical Mpro inhibitor GC376. Significantly, 23R is highly selective compared with covalent inhibitors such as GC376, especially toward host proteases. The cocrystal structure of SARS-CoV-2 Mpro with 23R revealed a previously unexplored binding site located in between the S2 and S4 pockets. Overall, this study discovered 23R, one of the most potent and selective noncovalent SARS-CoV-2 Mpro inhibitors reported to date, and a novel binding pocket in Mpro that can be explored for inhibitor design.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Drug Design , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , COVID-19/metabolism , Chlorocebus aethiops , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Proline/analogs & derivatives , Proline/chemical synthesis , Proline/chemistry , Proline/pharmacology , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , SARS-CoV-2/enzymology , Sulfonic Acids/chemical synthesis , Sulfonic Acids/chemistry , Sulfonic Acids/pharmacology , Vero Cells , COVID-19 Drug Treatment
12.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2103.09060v1

ABSTRACT

The growing popularity of e-scooters and their rapid expansion across urban streets has attracted widespread attention. A major policy question is whether e-scooters substitute existing mobility options or fill the service gaps left by them. This study addresses this question by analyzing the spatiotemporal patterns of e-scooter service availability and use in Washington DC, focusing on their spatial relationships with public transit and bikesharing. Results from an analysis of three open big datasets suggest that e-scooters have both competing and complementary effects on transit and bikesharing services. The supply of e-scooters significantly overlaps with the service areas of transit and bikesharing, and we classify a majority of e-scooter trips as substitutes to transit and bikesharing uses. A travel-time-based analysis further reveals that when choosing e-scooters over transit, travelers pay a price premium and save some travel time. The price premium is greater during the COVID-19 pandemic but the associated travel-time savings are smaller. This implies that public health considerations rather than time-cost tradeoffs are the main driver for many to choose e-scooters over transit during COVID. In addition, we find that e-scooters complement bikesharing and transit by providing services to underserved neighborhoods. A sizeable proportion (about 10 percent) of e-scooter trips are taken to connect with the rail services. Future research may combine the big-data-based analysis presented here with traditional methods to further shed light on the interactions between e-scooter services, bikesharing, and public transit.


Subject(s)
COVID-19
13.
J Virol ; 2021 Mar 03.
Article in English | MEDLINE | ID: covidwho-1117219

ABSTRACT

Cell entry by SARS-CoV-2 requires the binding between the receptor-binding domain (RBD) of the viral Spike protein and the cellular angiotensin-converting enzyme 2 (ACE2). As such, RBD has become the major target for vaccine development, while RBD-specific antibodies are pursued as therapeutics. Here, we report the development and characterization of SARS-CoV-2 RBD-specific VHH/nanobody (Nb) from immunized alpacas. Seven RBD-specific Nbs with high stability were identified using phage display. They bind to SARS-CoV-2 RBD with affinity KD ranging from 2.6 to 113 nM, and six of them can block RBD-ACE2 interaction. The fusion of the Nbs with IgG1 Fc resulted in homodimers with greatly improved RBD-binding affinities (KD ranging from 72.7 pM to 4.5 nM) and nanomolar RBD-ACE2 blocking abilities. Furthermore, the fusion of two Nbs with non-overlapping epitopes resulted in hetero-bivalent Nbs, namely aRBD-2-5 and aRBD-2-7, with significantly higher RBD binding affinities (KD of 59.2 pM and 0.25 nM) and greatly enhanced SARS-CoV-2 neutralizing potency. The 50% neutralization dose (ND50) of aRBD-2-5 and aRBD-2-7 was 1.22 ng/mL (∼0.043 nM) and 3.18 ng/mL (∼0.111 nM), respectively. These high-affinity SARS-CoV-2 blocking Nbs could be further developed into therapeutics as well as diagnostic reagents for COVID-19.ImportanceTo date, SARS-CoV-2 has caused tremendous loss of human life and economic output worldwide. Although a few COVID-19 vaccines have been approved in several countries, the development of effective therapeutics, including SARS-CoV-2 targeting antibodies, remains critical. Due to their small size (13-15 kDa), high solubility, and stability, Nbs are particularly well suited for pulmonary delivery and more amenable to engineer into multivalent formats than the conventional antibody. Here, we report a series of new anti-SARS-CoV-2 Nbs isolated from immunized alpaca and two engineered hetero-bivalent Nbs. These potent neutralizing Nbs showed promise as potential therapeutics against COVID-19.

14.
World J Clin Cases ; 9(6): 1394-1401, 2021 Feb 26.
Article in English | MEDLINE | ID: covidwho-1110768

ABSTRACT

BACKGROUND: A disease caused by a novel coronavirus virus, named coronavirus disease 2019 (COVID-19), broke out in Wuhan, China in December 2019, and spread around the word. As of March 4, 2020, 93090 confirmed cases and 2984 deaths have been reported in more than 80 countries and territories. It has triggered global public health security. However, the features and prognosis of COVID-19 are incompletely understood. CASE SUMMARY: We here report that the erythrocyte sedimentation rate (ESR) increased in a confirmed COVID patient. The high level of ESR sustained for a long time even after the patient recovered from COVID-19, while all results related to tumor, tuberculosis, rheumatic diseases, anemia, etc. cannot explain the abnormal elevation of ESR presented in this case. CONCLUSION: Although the increased ESR cannot be explained by all existing evidence, it possibly links the abnormal pathologic change in some COVID-19 patients and negative prognosis, and provides the clue to dissect the mechanism of illness progressing in COVID-19 and its prognosis.

15.
Emerg Microbes Infect ; 10(1): 317-330, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1075417

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an ongoing pandemic that lacks effective therapeutic interventions. SARS-CoV-2 infects ACE2-expressing cells and gains cell entry through either direct plasma membrane fusion or endocytosis. Recent studies have shown that in addition to ACE2, heparan sulfate proteoglycans (HSPGs) also play an important role in SARS-CoV-2 cell attachment by serving as an attachment factor. Binding of viral spike protein to HSPGs leads to the enrichment of local concentration for the subsequent specific binding with ACE2. We therefore hypothesize that blocking the interactions between viral spike protein and the HSPGs will lead to inhibition of viral replication. In this study, we report our findings of the broad-spectrum antiviral activity and the mechanism of action of lactoferrin (LF) against multiple common human coronaviruses as well as SARS-CoV-2. Our study has shown that LF has broad-spectrum antiviral activity against SARS-CoV-2, HCoV-OC43, HCoV-NL63, and HCoV-229E in cell culture, and bovine lactoferrin (BLF) is more potent than human lactoferrin. Mechanistic studies revealed that BLF binds to HSPGs, thereby blocking viral attachment to the host cell. The antiviral activity of BLF can be antagonized by the HSPG mimetic heparin. Combination therapy experiment showed that the antiviral activity of LF is synergistic with remdesivir in cell culture. Molecular modelling suggests that the N-terminal positively charged region in BLF (residues 17-41) confers the binding to HSPGs. Overall, LF appears to be a promising drug candidate for COVID-19 that warrants further investigation.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/pharmacology , Coronavirus/drug effects , Heparan Sulfate Proteoglycans/metabolism , Lactoferrin/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Cattle , Cell Line , Cells, Cultured , Drug Delivery Systems , Drug Synergism , Heparin/metabolism , Humans , Microbial Sensitivity Tests , Virus Attachment/drug effects
17.
Sci Adv ; 6(50)2020 12.
Article in English | MEDLINE | ID: covidwho-969082

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is a key antiviral drug target. While most Mpro inhibitors have a γ-lactam glutamine surrogate at the P1 position, we recently found that several Mpro inhibitors have hydrophobic moieties at the P1 site, including calpain inhibitors II and XII, which are also active against human cathepsin L, a host protease that is important for viral entry. In this study, we solved x-ray crystal structures of Mpro in complex with calpain inhibitors II and XII and three analogs of GC-376 The structure of Mpro with calpain inhibitor II confirmed that the S1 pocket can accommodate a hydrophobic methionine side chain, challenging the idea that a hydrophilic residue is necessary at this position. The structure of calpain inhibitor XII revealed an unexpected, inverted binding pose. Together, the biochemical, computational, structural, and cellular data presented herein provide new directions for the development of dual inhibitors as SARS-CoV-2 antivirals.


Subject(s)
Cathepsin L/chemistry , Coronavirus 3C Proteases/chemistry , Drug Design , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Animals , Caco-2 Cells , Cathepsin L/antagonists & inhibitors , Cathepsin L/metabolism , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Dogs , Humans , Kinetics , Madin Darby Canine Kidney Cells , Models, Chemical , Molecular Structure , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protein Domains , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL